Exercise 1: 15 points

Solve the following linear system by using Gaussian elimination:

$$
\left\{\begin{array}{c}
x+2 y-3 z=4 \\
x+3 y+z=11 \\
2 x+5 y-4 z=13 \\
2 x+6 y+2 z=22
\end{array}\right.
$$

Exercise 2: 15 points

For what value(s) of the parameter k has exactly one solution? No solution? Infinitely many solutions?

$$
\left\{\begin{array}{c}
x-3 z=-3 \\
x+2 y+k z=1 \\
2 x+k y-z=-2
\end{array}\right.
$$

Exercise 3: 10 points

Evaluate the determinant of the following matrix:

$$
A=\left(\begin{array}{rrrr}
2 & 5 & -3 & -2 \\
-2 & -3 & 2 & -5 \\
1 & 3 & -2 & 2 \\
-1 & -6 & 4 & 3
\end{array}\right) .
$$

Exercise 4: 20 points (15 points +5 points)
Let $A=\left(\begin{array}{ccc}1 & 3 & 4 \\ 3 & -1 & 6 \\ -1 & 5 & 1\end{array}\right)$ and $b=\left(\begin{array}{r}-1 \\ 1 \\ 0\end{array}\right)$
a) Justify that the matrix A is invertible and then, find A^{-1} by using a method of your choice.
b) Solve the linear system $A x=b$ using A^{-1}.

Exercise 5: 15 points

Let $A=\left(\begin{array}{ll}5 & 2 \\ 9 & 2\end{array}\right)$.
a) Find the eigenvalues and the corresponding eigenvectors of the matrix A.
b) Evaluate the trace and the determinant of the matrix A.

What identity relating $\operatorname{tr}(A)$ and the eigenvalues of A can you find?
What identity relating $\operatorname{det}(A)$ and the eigenvalues of A can you find?

Exercise 6: 25 points (5 points for each question)

a) Is it true that any upper triangular matrix is in row-echelon form?
b) Let $A=\left(\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right)$ where $a \in \mathbf{R}$. Find A^{2}, A^{3}, A^{4} and conjecture a general expression of A^{n}, for all n.
c) Let $B=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$. Find all matrices $\left(\begin{array}{ll}x & y \\ z & w\end{array}\right)$ that commute with B.
d) Under what condition on n does an $n \times n$ matrix A with real entries satisfy the condition $A^{2}=-I$?
e) For any $n \times n$ square matrix A show that: $\operatorname{det}(\operatorname{adj}(A))=\operatorname{det}(A)^{n-1}$.

Sections 9

Exercise 1：（20 points）
Solve the following linear system：
$\left\{\begin{array}{r}x_{2}-x_{3}+x_{4}=0 \\ 2 x_{1}-x_{2}+3 x_{3}-x_{4}=6 \\ 4 x_{1}+4 x_{2}+4 x_{4}=12 \\ 3 x_{1}-3 x_{2}+6 x_{3}-3 x_{4}=9\end{array}\right.$
Exercise 2：（10 points）
Let $L=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ a & 1 & 0 & 0 \\ a^{2} & a & 1 & 0 \\ a^{3} & a^{2} & a & 1\end{array}\right)$ ．Find L^{-1} ，using row operations．

Exercise 3：（20 points）

Let $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 1 & 2 \\ 2 & 3 & 1\end{array}\right)$
a）Find the determinant of A ，using a cofactor expansion of your choice．
b）Find the determinant of A ，as a sum of all signed elementary products from A（you can use the arrows method）．
c）Justify that A is invertible and find A^{-1} ，using the adjoint formula．

Exercise 4：（15 points）

Let $B=\left(\begin{array}{ll}2 & 3 \\ 4 & 3\end{array}\right)$ ．Find the eigenvalues and the corresponding eigenvectors of the matrix B ．

Exercise 5：（10 points）
Consider for any square matrix A the following definitions：
If $A^{2}=A$ ，then A is called idempotent．
If $A^{2}=I$ ，then A is called involutory．
If $A^{n}=0$ for some positive integer n ，the A is called nilpotent of order n ．
What can you say about the determinant of A ：
a）If A is idempotent？
b）If A is involutory？
c）If A is nilpotent of order n ？

Exercise 6：（25 points）

Prove or disprove：
a）$\forall A, B \in R^{n \times n}$ ，if $B A=A$ ，then $B=I$（where I is the identity matrix of size n ）．
b）$\forall A \in R^{n \times n}$ ，if D is an $n \times n$ diagonal matrix then $A D=D A$ ．
c）$\forall A, B \in R^{n \times n},(A+B)(A-B)=A^{2}-B^{2}$ ．
d）$\forall A, B \in R^{n \times n}$ ，if A is invertible and B is not，then $A B$ is not invertible．
e）$\forall A \in R^{n \times n}, A+A^{T}$ is symmetric．

